By Topic

Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adomavicius, G. ; Dept. of Inf. & Decision Sci., Univ. of Minnesota, Minneapolis, MN, USA ; YoungOk Kwon

Recommender systems are becoming increasingly important to individual users and businesses for providing personalized recommendations. However, while the majority of algorithms proposed in recommender systems literature have focused on improving recommendation accuracy (as exemplified by the recent Netflix Prize competition), other important aspects of recommendation quality, such as the diversity of recommendations, have often been overlooked. In this paper, we introduce and explore a number of item ranking techniques that can generate substantially more diverse recommendations across all users while maintaining comparable levels of recommendation accuracy. Comprehensive empirical evaluation consistently shows the diversity gains of the proposed techniques using several real-world rating data sets and different rating prediction algorithms.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 5 )