By Topic

Vessel Boundary Delineation on Fundus Images Using Graph-Based Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xiayu Xu ; Department of Biomedical Engineering, University of Iowa, Iowa City ; Meindert Niemeijer ; Qi Song ; Milan Sonka
more authors

This paper proposes an algorithm to measure the width of retinal vessels in fundus photographs using graph-based algorithm to segment both vessel edges simultaneously. First, the simultaneous two-boundary segmentation problem is modeled as a two-slice, 3-D surface segmentation problem, which is further converted into the problem of computing a minimum closed set in a node-weighted graph. An initial segmentation is generated from a vessel probability image. We use the REVIEW database to evaluate diameter measurement performance. The algorithm is robust and estimates the vessel width with subpixel accuracy. The method is used to explore the relationship between the average vessel width and the distance from the optic disc in 600 subjects.

Published in:

IEEE Transactions on Medical Imaging  (Volume:30 ,  Issue: 6 )