By Topic

Robust Principal Component Analysis Based on Maximum Correntropy Criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ran He ; Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China ; Bao-Gang Hu ; Wei-Shi Zheng ; Xiang-Wei Kong

Principal component analysis (PCA) minimizes the mean square error (MSE) and is sensitive to outliers. In this paper, we present a new rotational-invariant PCA based on maximum correntropy criterion (MCC). A half-quadratic optimization algorithm is adopted to compute the correntropy objective. At each iteration, the complex optimization problem is reduced to a quadratic problem that can be efficiently solved by a standard optimization method. The proposed method exhibits the following benefits: 1) it is robust to outliers through the mechanism of MCC which can be more theoretically solid than a heuristic rule based on MSE; 2) it requires no assumption about the zero-mean of data for processing and can estimate data mean during optimization; and 3) its optimal solution consists of principal eigenvectors of a robust covariance matrix corresponding to the largest eigenvalues. In addition, kernel techniques are further introduced in the proposed method to deal with nonlinearly distributed data. Numerical results demonstrate that the proposed method can outperform robust rotational-invariant PCAs based on L1 norm when outliers occur.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 6 )