By Topic

A Control Framework for the Smart Grid for Voltage Support Using Agent-Based Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aquino-Lugo, A.A. ; Univ. of Illinois Urbana-Champaign, Urbana, IL, USA ; Klump, R. ; Overbye, T.J.

The introduction of remotely controlled network devices is transforming the way the power system is operated and studied. The ability to provide real and reactive power support can be achieved at the end-user level. In this paper, a framework and algorithm to coordinate this type of end-user control is presented. The algorithm is based on a layered architecture that would follow a chain of command from the top layer (transmission grid) to the bottom layer (distribution grid). At the distribution grid layer, certain local problems can be solved without the intervention of the top layers. A reactive load control optimization algorithm to improve the voltage profile in distribution grid is presented. The framework presented in this paper integrates agent-based technologies to manage the data and control actions required to operate this type of architecture.

Published in:

Smart Grid, IEEE Transactions on  (Volume:2 ,  Issue: 1 )