By Topic

A breast cancer classifier based on a combination of case-based reasoning and ontology approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lotfy Abdrabou, E.A.M. ; Fac. of Comput. & Inf. Sci., Ain Shams Univ., Cairo, Egypt ; Salem, A.-B.M.

Breast cancer is the second most common form of cancer amongst females and also the fifth most cause of cancer deaths worldwide. In case of this particular type of malignancy, early detection is the best form of cure and hence timely and accurate diagnosis of the tumor is extremely vital. Extensive research has been carried out on automating the critical diagnosis procedure as various machine learning algorithms have been developed to aid physicians in optimizing the decision task effectively. In this research, we present a benign/malignant breast cancer classification model based on a combination of ontology and case-based reasoning to effectively classify breast cancer tumors as either malignant or benign. This classification system makes use of clinical data. Two CBR object-oriented frameworks based on ontology are used jCOLIBRI and myCBR. A breast cancer diagnostic prototype is built. During prototyping, we examine the use and functionality of the two focused frameworks.

Published in:

Computer Science and Information Technology (IMCSIT), Proceedings of the 2010 International Multiconference on

Date of Conference:

18-20 Oct. 2010