By Topic

An approximate Annealing Search algorithm to global optimization and its connection to stochastic approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiaqiao Hu ; Dept. of Appl. Math. & Stat., State Univ. of New York at Stony Brook, Stony Brook, NY, USA ; Ping Hu

The Annealing Adaptive Search (AAS) algorithm searches the feasible region of an optimization problem by generating candidate solutions from a sequence of Boltzmann distributions. However, the difficulty of sampling from a Boltzmann distribution at each iteration of the algorithm limits its applications to practical problems. To address this difficulty, we propose an approximation of AAS, called Model-based Annealing Random Search (MARS), that samples solutions from a sequence of surrogate distributions that iteratively approximate the target Boltzmann distributions. We present the global convergence properties of MARS by exploiting its connection to the stochastic approximation method and report on numerical results.

Published in:

Simulation Conference (WSC), Proceedings of the 2010 Winter

Date of Conference:

5-8 Dec. 2010