By Topic

Using simulation-based Stochastic Approximation to optimize staffing of systems with Skills-Based-Routing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feldman, Z. ; IBM Haifa Res. Labs., Haifa Univ. Campus, Haifa, Israel ; Mandelbaum, A.

In this paper, we consider the problem of minimizing the operational costs of systems with Skills-Based-Routing (SBR). In such systems, customers of multiple classes are routed to servers of multiple skills. In the settings we consider, each server skill is associated with a corresponding cost, and service level can either appear as a strong constraint or incur a cost. The solution we propose is based on the Stochastic Approximation (SA) approach. Since SBR models are analytically intractable in general, we use computer simulation to evaluate service-level measures. Under the assumption of convexity of the service-level as functions in staffing levels, SA provides an analytical proof of convergence, together with a rate of convergence. We show, via numerical examples, that although the convexity assumption does not hold for all cases and all types of service-level objectives, the algorithm nevertheless identifies the optimal solution.

Published in:

Simulation Conference (WSC), Proceedings of the 2010 Winter

Date of Conference:

5-8 Dec. 2010