By Topic

Electric-Field-Driven Degradation in off-State Step-Stressed AlGaN/GaN High-Electron Mobility Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Chih-Yang Chang ; Dept. of Mater. Sci. & Eng., Univ. of Florida, Gainesville, FL, USA ; Douglas, E.A. ; Kim, Jinhyung ; Liu Lu
more authors

The critical degradation voltage of AlGaN/GaN high-electron mobility transistors during off-state electrical stress was determined as a function of Ni/Au gate dimensions (0.1-0.17 μm), drain bias voltage, and source/drain-gate contact distance. Devices with different gate lengths and gate-drain distances were found to exhibit the onset of degradation at different source-drain biases but similar electric field strengths, showing that the degradation mechanism is primarily field driven. The degradation field was calculated to be ~ 1.8 MV/cm by Automatically Tuned Linear Algebra Software simulations. Transmission electron microscopy imaging showed creation of defects under the gate after dc stress.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:11 ,  Issue: 1 )