Cart (Loading....) | Create Account
Close category search window

Two-Dimensional Field Analysis on Electromagnetic Vibration-and-Noise Sources in Permanent-Magnet Direct Current Commutator Motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guhuan He ; Sch. of Electron., Inf. & Electr. Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Zhenyu Huang ; Dayue Chen

This paper concerns the modeling of electromagnetic vibration-and-noise sources in permanent-magnet direct current (PMDC) commutator motors. The electromagnetic sources are considered as an electromagnetic field distributed in the air-gap region of a PMDC motor. The latter is then formulated by the two-dimensional field theory in polar coordinates with the consideration of slotting effects and the armature reaction field. Consequently, based on the derived radial electromagnetic field, the radial and tangential magnetic forces acting on the inner surface of the permanent magnets can be expressed as Fourier functions in forms of space and frequency harmonics. The results obtained from the present models agree well with those from the finite-element models. In addition, the measured cogging torque is compared to those calculated by the analytical and finite-element models to validate the formulated electromagnetic field and magnetic forces. Furthermore, experimental investigations are carried out on the electromagnetic vibration-and-noise behavior of a commonly used PMDC commutator motor (such as that in heating, ventilating, and air conditioning (HVAC) systems). By measuring the natural frequencies and the associated mode shapes of the stator, the relationships between the magnetic forces and the measured vibration-and-noise responses are discussed in the frequency domain.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 4 )

Date of Publication:

April 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.