By Topic

Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Michael G. Epitropakis ; Department of Mathematics, University of Patras, Patras, Greece ; Dimitris K. Tasoulis ; Nicos G. Pavlidis ; Vassilis P. Plagianakos
more authors

Differential evolution is a very popular optimization algorithm and considerable research has been devoted to the development of efficient search operators. Motivated by the different manner in which various search operators behave, we propose a novel framework based on the proximity characteristics among the individual solutions as they evolve. Our framework incorporates information of neighboring individuals, in an attempt to efficiently guide the evolution of the population toward the global optimum, without sacrificing the search capabilities of the algorithm. More specifically, the random selection of parents during mutation is modified, by assigning to each individual a probability of selection that is inversely proportional to its distance from the mutated individual. The proposed framework can be applied to any mutation strategy with minimal changes. In this paper, we incorporate this framework in the original differential evolution algorithm, as well as other recently proposed differential evolution variants. Through an extensive experimental study, we show that the proposed framework results in enhanced performance for the majority of the benchmark problems studied.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:15 ,  Issue: 1 )