Cart (Loading....) | Create Account
Close category search window
 

A Novel Technique for Improving Hardware Trojan Detection and Reducing Trojan Activation Time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salmani, H. ; Dept. of Electr. & Comput. Eng., Univ. of Connecticut, Storrs, CT, USA ; Tehranipoor, M. ; Plusquellic, J.

Fabless semiconductor industry and government agencies have raised serious concerns about tampering with inserting hardware Trojans in an integrated circuit supply chain in recent years. Most of the recently proposed Trojan detection methods are based on Trojan activation to observe either a faulty output or measurable abnormality on side-channel signals. Time to activate a hardware Trojan circuit is a major concern from the authentication standpoint. This paper analyzes time to generate a transition in functional Trojans. Transition is modeled by geometric distribution and the number of clock cycles required to generate a transition is estimated. Furthermore, a dummy scan flip-flop insertion procedure is proposed aiming at decreasing transition generation time. The procedure increases transition probabilities of nets beyond a specific threshold. The relation between circuit topology, authentication time, and the threshold is carefully studied. The simulation results on s38417 benchmark circuit demonstrate that, with a negligible area overhead, our proposed method can significantly increase Trojan activity and reduce Trojan activation time.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.