By Topic

High Performance Computing for Hyperspectral Remote Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Antonio Plaza ; Department of Technology of Computers and Communications, Escuela Politécnica, University of Extremadura, Cáceres, Spain ; Qian Du ; Yang-Lang Chang ; Roger L. King

Advances in sensor and computer technology are revolutionizing the way remotely sensed data is collected, managed and analyzed. In particular, many current and future applications of remote sensing in Earth science, space science, and soon in exploration science will require real- or near real-time processing capabilities. In recent years, several efforts have been directed towards the incorporation of high-performance computing (HPC) models to remote sensing missions. A relevant example of a remote sensing application in which the use of HPC technologies (such as parallel and distributed computing) is becoming essential is hyperspectral remote sensing, in which an imaging spectrometer collects hundreds or even thousands of measurements (at multiple wavelength channels) for the same area on the surface of the Earth. In this paper, we review recent developments in the application of HPC techniques to hyperspectral imaging problems, with particular emphasis on commodity architectures such as clusters, heterogeneous networks of computers, and specialized hardware devices such as field programmable gate arrays (FPGAs) and commodity graphic processing units (GPUs). A quantitative comparison across these architectures is given by analyzing performance results of different parallel implementations of the same hyperspectral unmixing chain, delivering a snapshot of the state-of-the-art in this area and a thoughtful perspective on the potential and emerging challenges of applying HPC paradigms to hyperspectral remote sensing problems.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:4 ,  Issue: 3 )