Cart (Loading....) | Create Account
Close category search window
 

Coalition Formation Games for Distributed Cooperation Among Roadside Units in Vehicular Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Saad, W. ; UNIK - Univ. Grad. Center, Univ. of Oslo, Kjeller, Norway ; Zhu Han ; Hjorungnes, A. ; Niyato, D.
more authors

Vehicle-to-roadside (V2R) communications enable vehicular networks to support a wide range of applications for enhancing the efficiency of road transportation. While existing work focused on non-cooperative techniques for V2R communications between vehicles and roadside units (RSUs), this paper investigates novel cooperative strategies among the RSUs in a vehicular network. We propose a scheme whereby, through cooperation, the RSUs in a vehicular network can coordinate the classes of data being transmitted through V2R communication links to the vehicles. This scheme improves the diversity of the information circulating in the network while exploiting the underlying content-sharing vehicle-to-vehicle communication network. We model the problem as a coalition formation game with transferable utility and we propose an algorithm for forming coalitions among the RSUs. For coalition formation, each RSU can take an individual decision to join or leave a coalition, depending on its utility which accounts for the generated revenues and the costs for coalition coordination. We show that the RSUs can self-organize into a Nash-stable partition and adapt this partition to environmental changes. Simulation results show that, depending on different scenarios, coalition formation presents a performance improvement, in terms of the average payoff per RSU, ranging between 20.5% and 33.2%, relative to the non-cooperative case.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:29 ,  Issue: 1 )

Date of Publication:

January 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.