By Topic

Image Decomposition With Multilabel Context: Algorithms and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Teng Li ; Chinese Academy of Sciences, Institute of Automation, Beijing, P. R. China ; Shuicheng Yan ; Tao Mei ; Xian-Sheng Hua
more authors

Most research on image decomposition, e.g., image segmentation and image parsing, has predominantly focused on the low-level visual clues within a single image and neglected the contextual information across images. In this paper, we present a new perspective to image decomposition piloted by the multilabel context associated with each individual image. Observing that the contextual information (i.e., local label representations of the same label are similar while those from different labels are dissimilar) exists across images, we propose to perform image decomposition in a collective way and obtain an optimal representation for each label from a set of multilabeled images. We formulate the problem as an optimization problem which maximizes inter-label difference while minimizing the intra-label difference of the target label representations and propose two ways to solve this problem. Such a contextual image decomposition has a wide variety of applications, among which two exemplary ones-multilabel image annotation and label ranking, are presented and evaluated with different classification techniques. Extensive experiments on two benchmark datasets demonstrate promising results.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 8 )