By Topic

A Sub-Nyquist Rate Sampling Receiver Exploiting Compressive Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xi Chen ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Zhuizhuan Yu ; Hoyos, Sebastian ; Sadler, B.M.
more authors

This paper presents a sub-Nyquist rate sampling receiver architecture that exploits signal sparsity by employing compressive sensing (CS) techniques. The receiver serves as an analog-to-information conversion system that works at sampling rates much lower than the Nyquist rate. A parallel-path structure that employs current mode sampling techniques is used. The receiver performance is quantified analytically. Useful and fundamental design guidelines that are unique to CS are provided based on the analytical tools. Simulations with a 90-nm CMOS process verify the theoretical derivations and the circuit implementations. Based on these results, it is shown that an instantaneous receiver signal bandwidth of 1.5 GHz and a signal-to-noise-plus-distortion ratio of 44 dB are achievable. The receiver power consumption is estimated to be 120.8 mW. A comparison with state-of-the-art high-speed analog-to-digital conversions reveals that the proposed approach improves the figure of merit by a factor of three if the signal exhibits a 4% sparsity.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 3 )