Cart (Loading....) | Create Account
Close category search window

Neural Network-Based Teeth Recognition Using Singular Value Decomposition and Color Histogram

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Veeraprasit, S. ; Dept. of Math., Chulalongkorn Univ., Bangkok, Thailand ; Phimoltares, S.

Nowadays, biometric technology is used in various security applications. The efficiency of such applications depends upon a type of biometric information. Nevertheless, some information can be faked by intent surgery or they are unexpectedly reshaped such as face, iris, palmprint and fingerprint. Unlike ordinary features, teeth cannot be easily reshaped. In this paper, we proposed appropriate features including machine learning model for teeth recognition. The features of our system are composed of singular values and color histogram of teeth image. These features were fed into the multilayer perceptron network with Levenberg-Marquart backpropagation training algorithm. With these features and model, the proposed method performs better than other existing techniques in terms of accuracy and error.

Published in:

Information Engineering and Computer Science (ICIECS), 2010 2nd International Conference on

Date of Conference:

25-26 Dec. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.