By Topic

Ferrite Based Non-Reciprocal Radome, Generalized Scattering Matrix Analysis and Experimental Demonstration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Armin Parsa ; Rutter Inc., St. John's, Canada ; Toshiro Kodera ; Christophe Caloz

A non-reciprocal antenna radome based on the Faraday rotation effect in a ferrite slab is proposed and analyzed. This radome allows transmission in one direction and attenuates the signal in the opposite direction. It includes two layers of strip gratings on each side of the ferrite slab, consisting of highly conductive strips for proper reflection, and thin highly lossy strips for reflection/dissipation, and three dielectric layers for matching. The radome is analyzed rigorously by the generalized scattering matrix (GSM) method and its performance experimentally demonstrated between two broadband antennas. The measured results show 21 dB and 0.85 dB loss in the isolation and transmission directions, respectively.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:59 ,  Issue: 3 )