Cart (Loading....) | Create Account
Close category search window
 

An Augmented Electric Field Integral Equation for Layered Medium Green's Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen, Y.P. ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China ; Lijun Jiang ; Zhi-Guo Qian ; Weng Cho Chew

This paper proposes an augmented electric field integral equation (A-EFIE) for layered medium Green's function. The newly developed matrix-friendly formulation of layered medium Green's function is applied in this method. By separating charge as extra unknown list, and enforcing the current continuity equation, the traditional EFIE can be cast into a generalized saddle-point system. Frequency scaling for the matrix-friendly formulation is analyzed when frequency tends to zero. Rank deficiency and the charge neutrality enforcement of the A-EFIE for layered medium Green's function is discussed in detail. The electrostatic limit of the A-EFIE is also analyzed. Without any topological loop-searching algorithm, electrically small conducting structures embedded in a general layered medium can be simulated by using this new A-EFIE formulation. Several numerical results are presented to validate this method at the end of this paper.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.