By Topic

ALARM: Anonymous Location-Aided Routing in Suspicious MANETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karim El Defrawy ; University of California Irvine, Irvine ; Gene Tsudik

In most common mobile ad hoc networking (MANET) scenarios, nodes establish communication based on long-lasting public identities. However, in some hostile and suspicious settings, node identities must not be exposed and node movements should be untraceable. Instead, nodes need to communicate on the basis of their current locations. While such MANET settings are not very common, they do occur in military and law enforcement domains and require high security and privacy guarantees. In this paper, we address a number of issues arising in suspicious location-based MANET settings by designing and analyzing a privacy-preserving and secure link-state based routing protocol (ALARM). ALARM uses nodes' current locations to securely disseminate and construct topology snapshots and forward data. With the aid of advanced cryptographic techniques (e.g., group signatures), ALARM provides both security and privacy features, including node authentication, data integrity, anonymity, and untraceability (tracking-resistance). It also offers protection against passive and active insider and outsider attacks. To the best of our knowledge, this work represents the first comprehensive study of security, privacy, and performance tradeoffs in the context of link-state MANET routing.

Published in:

IEEE Transactions on Mobile Computing  (Volume:10 ,  Issue: 9 )