Cart (Loading....) | Create Account
Close category search window
 

BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pan Hui ; Deutsche Telekom Labs., Berlin, Germany ; Crowcroft, J. ; Yoneki, E.

The increasing penetration of smart devices with networking capability form novel networks. Such networks, also referred as pocket switched networks (PSNs), are intermittently connected and represent a paradigm shift of forwarding data in an ad hoc manner. The social structure and interaction of users of such devices dictate the performance of routing protocols in PSNs. To that end, social information is an essential metric for designing forwarding algorithms for such types of networks. Previous methods relied on building and updating routing tables to cope with dynamic network conditions. On the downside, it has been shown that such approaches end up being cost ineffective due to the partial capture of the transient network behavior. A more promising approach would be to capture the intrinsic characteristics of such networks and utilize them in the design of routing algorithms. In this paper, we exploit two social and structural metrics, namely centrality and community, using real human mobility traces. The contributions of this paper are two-fold. First, we design and evaluate BUBBLE, a novel social-based forwarding algorithm, that utilizes the aforementioned metrics to enhance delivery performance. Second, we empirically show that BUBBLE can substantially improve forwarding performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET algorithm, and social-based forwarding SimBet algorithm.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:10 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.