By Topic

A Framework for Similarity Search of Time Series Cliques with Natural Relations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bin Cui ; Dept. of Comput. Sci., Peking Univ., Beijing, China ; Zhe Zhao ; Wee Hyong Tok

A Time Series Clique (TSC) consists of multiple time series which are related to each other by natural relations. The natural relations that are found between the time series depend on the application domains. For example, a TSC can consist of time series which are trajectories in video that have spatial relations. In conventional time series retrieval, such natural relations between the time series are not considered. In this paper, we formalize the problem of similarity search over a TSC database. We develop a novel framework for efficient similarity search on TSC data. The framework addresses the following issues. First, it provides a compact representation for TSC data. Second, it uses a multidimensional relation vector to capture the natural relations between the multiple time series in a TSC. Lastly, the framework defines a novel similarity measure that uses the compact representation and the relation vector. We conduct an extensive performance study, using both real-life and synthetic data sets. From the performance study, we show that our proposed framework is both effective and efficient for TSC retrieval.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 3 )