By Topic

Laplacian Regularized Gaussian Mixture Model for Data Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaofei He ; Zhejiang University, Hangzhou ; Deng Cai ; Yuanlong Shao ; Hujun Bao
more authors

Gaussian Mixture Models (GMMs) are among the most statistically mature methods for clustering. Each cluster is represented by a Gaussian distribution. The clustering process thereby turns to estimate the parameters of the Gaussian mixture, usually by the Expectation-Maximization algorithm. In this paper, we consider the case where the probability distribution that generates the data is supported on a submanifold of the ambient space. It is natural to assume that if two points are close in the intrinsic geometry of the probability distribution, then their conditional probability distributions are similar. Specifically, we introduce a regularized probabilistic model based on manifold structure for data clustering, called Laplacian regularized Gaussian Mixture Model (LapGMM). The data manifold is modeled by a nearest neighbor graph, and the graph structure is incorporated in the maximum likelihood objective function. As a result, the obtained conditional probability distribution varies smoothly along the geodesics of the data manifold. Experimental results on real data sets demonstrate the effectiveness of the proposed approach.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:23 ,  Issue: 9 )