By Topic

Energy Conscious Scheduling for Distributed Computing Systems under Different Operating Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young Choon Lee ; Center for Distrib. & High Performance Comput., Univ. of Sydney, Sydney, NSW, Australia ; Zomaya, A.Y.

Traditionally, the primary performance goal of computer systems has focused on reducing the execution time of applications while increasing throughput. This performance goal has been mostly achieved by the development of high-density computer systems. As witnessed recently, these systems provide very powerful processing capability and capacity. They often consist of tens or hundreds of thousands of processors and other resource-hungry devices. The energy consumption of these systems has become a major concern. In this paper, we address the problem of scheduling precedence-constrained parallel applications on multiprocessor computer systems and present two energy-conscious scheduling algorithms using dynamic voltage scaling (DVS). A number of recent commodity processors are capable of DVS, which enables processors to operate at different voltage supply levels at the expense of sacrificing clock frequencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off between the quality of schedules and energy consumption. To effectively balance these two performance goals, we have devised a novel objective function and a variant from that. The main difference between the two algorithms is in their measurement of energy consumption. The extensive comparative evaluations conducted as part of this work show that the performance of our algorithms is very compelling in terms of both application completion time and energy consumption.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 8 )