Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Sliding-Mode Antisway Control of an Offshore Container Crane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Quang Hieu Ngo ; Sch. of Mech. Eng., Pusan Nat. Univ., Busan, South Korea ; Keum-Shik Hong

In this paper, a sliding-mode control for an offshore container crane is discussed. The offshore container crane is used to load/unload containers between a huge container ship (called the “mother ship”) and a smaller ship (called the “mobile harbor”), on which the crane is installed. The purpose of the mobile harbor is to load/unload containers in the open sea and transport them to shallower water where they can be offloaded at existing conventional ports, thereby obviating the need for expansive and expensive new facilities. The load/unload control objective is to suppress the pendulum motion (i.e., “sway”) of the load in the presence of the wave- and wind-induced movements (heave, roll, and pitch) of the mobile harbor. A new mechanism for lateral sway control, therefore, is proposed as well. A sliding surface is designed in such a way that the longitudinal sway of the load is incorporated with the trolley dynamics. The asymptotic stability of the closed-loop system is guaranteed by a control law derived for the purpose. The proposed new mechanism can suppress lateral sway, which functionality is not possible with conventional cranes. Simulation results are provided.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:17 ,  Issue: 2 )