By Topic

Characterization of Li-Ion Batteries for Intelligent Management of Distributed Grid-Connected Storage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jarno D. Dogger ; the Power Systems and Information Technology, Energy Research Centre of the Netherlands, The Netherlands ; Bart Roossien ; Frans D. J. Nieuwenhout

Grid-connected electrical storage has a high potential to support the transition toward a reliable decentralized and renewable energy supply. It is expected that lithium-ion batteries will play a major role in this transition, because of their high energy density and of the potential capacity that is offered by plug-in (hybrid) electric vehicles. The use of lithium-ion batteries in grid support may result in additional degradation. Intelligent control of these batteries can assure that the additional degradation rate is minimized and their utilization is cost-effective. It is, therefore, imperative that the intelligent control has an excellent understanding of the aging behavior of the battery, therefore, it can maximize the benefits for the battery owner. Based on this logic, cycle life experiments were performed on lithium polymer cells in which the cell life dependence on the depth of discharge was investigated. Other cell characteristics that were studied include the equivalent series resistance and the efficiency.

Published in:

IEEE Transactions on Energy Conversion  (Volume:26 ,  Issue: 1 )