Cart (Loading....) | Create Account
Close category search window

A Probabilistic Method for Energy Storage Sizing Based on Wind Power Forecast Uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bludszuweit, H. ; Univ. of Zaragoza, Zaragoza, Spain ; Dominguez-Navarro, J.A.

A novel method is proposed for designing an energy storage system (ESS) which is dedicated to the reduction of the uncertainty of short-term wind power forecasts up to 48 h. The investigation focuses on the statistical behavior of the forecast error and the state of charge (SOC) of the ESS. This approach gives an insight into the influence of the forecast conditions (horizon, quality) on the distribution of SOC. With this knowledge, an optimized sizing of the ESS can be done with a well-defined uncertainty limit. For this study, one-year time series of power output measurements and forecasts were available for two wind farms. As a reference, different forecast quality degrees are simulated based on a persistence approach. With the forecast data, empirical probability density functions (pdfs) are generated which are the basis of the proposed method. This approach can lead to a considerable reduction of the ESS and provides important information about the unserved energy. This unserved energy represents the remaining forecast uncertainty. As a consequence, the proposed probabilistic method permits the sizing of energy storage systems as a function of the desired remaining forecast uncertainty, reducing simultaneously power and energy capacity.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

Aug. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.