Cart (Loading....) | Create Account
Close category search window

I-Q TCM: reliable communication over the Rayleigh fading channel close to the cutoff rate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Al-Semari, S.A. ; Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Fuja, T.E.

This paper presents some trellis codes that provide high coding gain to channels with slow, non frequency-selective Rayleigh fading. It is shown that the use of two encoders in parallel-used to specify the in-phase and quadrature components of the transmitted signal-results in greater minimum time diversity than the conventional design in which a single encoder is used. Using this approach-which we label “I-Q TCM”-codes with bandwidth efficiencies of 1, 2, and 3 bits/s/Hz are described for various constraint lengths. The performance of these codes is bounded analytically and approximated via simulation; the results show a large improvement in the bit error rate (BER) when compared with conventional trellis-coded modulation (TCM) schemes when perfect channel state information (CSI) is available to the receiver. Indeed, when this approach is applied to channels with independent Rayleigh fading, the resulting coding gain is close to that implied by the cutoff rate limit, even for only moderately complex systems. The proposed codes are also simulated under less ideal assumptions. For instance, results for a 1-bit/s/Hz IQ-TCM code without CSI show a significant gain over conventional coding. Finally, simulations over channels with correlated fading were undertaken; it is concluded that an interleaver span of 4ν yields performance close to what is achieved with ideal interleaving

Published in:

Information Theory, IEEE Transactions on  (Volume:43 ,  Issue: 1 )

Date of Publication:

Jan 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.