Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Centralized collaborative compressed sensing of wideband spectrum for cognitive radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moussavinik, H. ; Dept. of Electron. & Telecommun., Norwegian Univ. of Sci. & Technol., Trondheim, Norway ; Guibene, W. ; Hayar, A.

This paper (1) presents a new centralized collaborative sensing technique for cognitive radio systems which combines algebraic tools and compressive sampling techniques. The proposed approach consists of the detection of spectrum holes using spectrum distribution discontinuities detector fed by compressed measurements. The compressed sensing algorithm is designed to take advantage from the primary signals sparsity and to keep the linearity and properties of the original signal in order to be able to apply algebraic detector on the compressed measurements. Collaboration among radios enables the cognitive network to detect hidden primary users and makes it more robust against fading and unknown channel conditions. Furthermore, as an important key point, collaboration makes it possible to sample more compressively at each radio, i.e., each radio performs sampling with a lower rate. The complexity of the proposed detector is also discussed and compared with the energy detector as reference algorithm. The comparison shows that the proposed technique outperforms energy detector in addition to its low complexity.

Published in:

Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2010 International Congress on

Date of Conference:

18-20 Oct. 2010