By Topic

A comprehensive framework to simulate network attacks and challenges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Egemen K. Çetinkaya ; Information and Telecommunication Technology Center, The University of Kansas, Lawrence, USA ; Dan Broyles ; Amit Dandekar ; Sripriya Srinivasan
more authors

Communication networks have evolved tremendously over the past several decades, offering a multitude of services while becoming an essential critical infrastructure in our daily lives. Networks in general, and the Internet in particular face a number of challenges to normal operation, including attacks and large-scale disasters, as well as due to the characteristics of the mobile wireless communication environment. It is therefore vital to have a framework and methodology for understanding the impact of challenges to harden current networks and improve the design of future networks. In this paper, we present a framework to evaluate network dependability and performability in the face of challenges. This framework uses ns-3 simulation as the methodology for analysis of the effects of perturbations to normal operation of the networks, with a challenge specification applied to the network topology. This framework can simulate both static and dynamic challenges based on the failure or wireless-impairment of individual components, as well as modelling geographically-correlated failures. We demonstrate this framework with the Sprint Rocketfuel and synthetically generated topologies as well as a wireless example, to show that this framework can provide valuable insight for the analysis and design of resilient networks.

Published in:

Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2010 International Congress on

Date of Conference:

18-20 Oct. 2010