Cart (Loading....) | Create Account
Close category search window
 

On the complexity of computing shortest fast reroute paths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jarry, A. ; CUI, Univ. of Geneva, Carouge, Switzerland

In order to keep services running despite link or node failure in MPLS networks, RSVP-TE fast reroute (FRR) schemes use precomputed backup label-switched path tunnels for local repair of LSP tunnels. In the event of failure, the redirection of traffic occurs onto backup LSP tunnels that have the same quality of service constraints than original paths. In this paper, we study the algorithmic aspects of computing original and back-up paths under quality of service constraints. We give an algorithm in O(nm+n2log(n)) that computes shortest guaranteed paths with their backup towards a single destination. In the case of directed graphs, we show that this algorithm is optimal by proving that computing shortest guaranteed paths is as hard as to compute multiple source shortest paths in directed graphs. In the case of undirected graphs, we propose a faster algorithm with time complexity O(mlog(n) + n2).

Published in:

Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2010 International Congress on

Date of Conference:

18-20 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.