By Topic

Effect of Composite Designs on Writability and Thermal Stability of Perpendicular Recording Media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nolan, T.P. ; Seagate Technol. Recording Media Oper., Fremont, CA, USA ; Valcu, B.F. ; Richter, Hans J.

The function of two types of magnetic inhomogeneity employed in perpendicular magnetic recording media designs are analyzed. Continuous granular composite (CGC) media have variable lateral exchange coupling (Hex) through the thickness of the magnetic layers, which can reduce coercivity (Hc) and narrow switching field distribution (SFD). Exchange coupled composite (ECC) media have variable crystalline anisotropy field (Hk) and interlayer exchange coupling (J) through the film thickness, which also reduces Hc. Interactions between the Hk, Hex, and J values of combined ECC+CGC media are presented. The optimum anisotropy profile for conventional ECC media is found to be different than previously modeled. A CGC layer included in the ECC media architecture is shown to change the optimal anisotropy profile and interlayer coupling values.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 1 )