Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Using Load Tests to Automatically Compare the Subsystems of a Large Enterprise System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Malik, H. ; Sch. of Comput., Queen''s Univ., Kingston, ON, Canada ; Adams, B. ; Hassan, A.E. ; Flora, P.
more authors

Enterprise systems are load tested for every added feature, software updates and periodic maintenance to ensure that the performance demands on system quality, availability and responsiveness are met. In current practice, performance analysts manually analyze load test data to identify the components that are responsible for performance deviations. This process is time consuming and error prone due to the large volume of performance counter data collected during monitoring, the limited operational knowledge of analyst about all the subsystem involved and their complex interactions and the unavailability of up-to-date documentation in the rapidly evolving enterprise. In this paper, we present an automated approach based on a robust statistical technique, Principal Component Analysis (PCA) to identify subsystems that show performance deviations in load tests. A case study on load test data of a large enterprise application shows that our approach do not require any instrumentation or domain knowledge to operate, scales well to large industrial system, generate few false positives (89% average precision) and detects performance deviations among subsystems in limited time.

Published in:

Computer Software and Applications Conference (COMPSAC), 2010 IEEE 34th Annual

Date of Conference:

19-23 July 2010