By Topic

A Perturbative Approach to Novelty Detection in Autoregressive Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Filippone, M. ; Dept. of Stat. Sci., Univ. Coll. London, London, UK ; Sanguinetti, G.

We propose a new method to perform novelty detection in dynamical systems governed by linear autoregressive models. The method is based on a perturbative expansion to a statistical test whose leading term is the classical F-test, and whose O(1/n) correction can be approximated as a function of the number of training points and the model order alone. The method can be justified as an approximation to an information theoretic test. We demonstrate on several synthetic examples that the first correction to the F-test can dramatically improve the control over the false positive rate of the system. We also test the approach on some real time series data, demonstrating that the method still retains a good accuracy in detecting novelties.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 3 )