Cart (Loading....) | Create Account
Close category search window

Semantic Analysis and Organization of Spoken Documents Based on Parameters Derived From Latent Topics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheng-Yi Kong ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Lin-shan Lee

Spoken documents are audio signals and are thus not easily displayed on-screen and not easily scanned and browsed by the user. It is therefore highly desirable to automatically construct summaries, titles, latent topic trees and key term-based topic labels for these spoken documents to aid the user in browsing. We refer to this as semantic analysis and organization. Also, as network content is both copious and dynamic, with topics and domains changing everyday, the approaches here must be primarily unsupervised. We propose a framework for unsupervised semantic analysis and organization of spoken documents and for this purpose propose two measures derived from latent topic analysis: latent topic significance and latent topic entropy. We show that these can be integrated into an application system, with which the user can more easily navigate archives of spoken documents. Probabilistic latent semantic analysis is used as a typical example approach for unsupervised topic analysis in most experiments, although latent Dirichlet allocation is also used in some experiments to show that the proposed measures are equally applicable for different analysis approaches. All of the experiments were performed on Mandarin Chinese broadcast news.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 7 )

Date of Publication:

Sept. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.