By Topic

Disturbance observer based control for nonlinear MAGLEV suspension system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jun Yang ; School of Automation, Southeast University, Nanjing 210096, China ; Argyrios Zolotas ; Wen-Hua Chen ; Konstantinos Michail
more authors

This paper investigates the disturbance rejection problem of nonlinear MAGnetic LEViation (MAGLEV) suspension system with “mismatching” disturbances. Here “mismatching” refers to the disturbances that enter the system via different channel to the control input. The disturbance referring in this paper is mainly on load variation and unmodeled nonlinear dynamics. By linearizing the nonlinear MAGLEV suspension model, a linear state-space disturbance observer (DOB) is designed to estimate the lumped “mismatching” disturbances. A new disturbance compensation control method based on the estimate of DOB is proposed to solve the disturbance attenuation problem. The efficacy of the proposed approach for rejecting given disturbance is illustrated via simulations on realistic track input.

Published in:

2010 Conference on Control and Fault-Tolerant Systems (SysTol)

Date of Conference:

6-8 Oct. 2010