By Topic

Cross-Layer Optimization and Network Coding in CSMA/CA-Based Wireless Multihop Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
June Hwang ; Dept. of Communications and Networking (ComNet), Aalto University, Aalto, Finland ; Seong-Lyun Kim

In this paper, we consider the CSMA/CA multihop networks where the two end-nodes transmit their packets to each other and each intermediate node adopts network coding for delivering bidirectional flows. In addition, the neighbor nodes are randomly uniformly deployed with the Poisson Point Process. By varying the combination of the physical carrier-sensing range of the transmitter node and the target signal-to-interference ratio (SIR) set by the receiver node, we can control the interference level in the network and the degree of spatial reuse of a frequency band. The larger the carrier-sensing range is, the smaller the interference level, while the smaller the opportunity of getting a channel by a node. Similarly, the higher the target SIR value is, the more probable the retransmission (by the exponential random backoff) is, while the better the link quality on successful transmission is getting. Under this tradeoff context, we find the optimal combinations of these two factors that make the end-to-end throughput of the flow maximal for three different retransmission schemes.

Published in:

IEEE/ACM Transactions on Networking  (Volume:19 ,  Issue: 4 )