By Topic

Low-Power and Reliable Clock Network Design for Through-Silicon Via (TSV) Based 3D ICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xin Zhao ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Minz, J. ; Sung Kyu Lim

This paper focuses on low-power and low-slew clock network design and analysis for through-silicon via (TSV) based three-dimensional stacked ICs (3D ICs). First, we investigate the impact of the TSV count and the TSV resistance-capacitance (RC) parasitics on clock power consumption. Several techniques are introduced to reduce the clock power consumption and slew of the 3D clock distribution network. We analyze how these design factors affect the overall wire length, clock power, slew, and skew in 3D clock network design. Second, we develop a two-step 3D clock tree synthesis method: 1) 3D abstract tree generation based on the three-dimensional method of means and medians (3D-MMM) algorithm; 2) buffering and embedding based on the slew-aware deferred-merge buffering and embedding (sDMBE) algorithm. We also extend the 3D-MMM method (3D-MMM-ext) to determine the optimal number of TSVs to be used in the 3D clock tree so that the overall power consumption is minimized. Related SPICE simulation indicates that: 1) a 3D clock network that uses multiple TSVs significantly reduces the clock power compared with the single-TSV case, 2) as the TSV capacitance increases, the power savings of a multiple-TSV clock network decreases, and 3) our 3D-MMM-ext method finds a close-to-optimal design point in the “TSV count versus power consumption” tradeoff curve very efficiently.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:1 ,  Issue: 2 )