By Topic

Smartphone-Based Collaborative and Autonomous Radio Fingerprinting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yungeun Kim ; Dept. of Comput. Sci., Yonsei Univ., Seoul, South Korea ; Yohan Chon ; Hojung Cha

Although active research has recently been conducted on received signal strength (RSS) fingerprint-based indoor localization, most of the current systems hardly overcome the costly and time-consuming offline training phase. In this paper, we propose an autonomous and collaborative RSS fingerprint collection and localization system. Mobile users track their position with inertial sensors and measure RSS from the surrounding access points. In this scenario, anonymous mobile users automatically collect data in daily life without purposefully surveying an entire building. The server progressively builds up a precise radio map as more users interact with their fingerprint data. The time drift error of inertial sensors is also compromised at run-time with the fingerprint-based localization, which runs with the collective fingerprints being currently built by the server. The proposed system has been implemented on a recent Android smartphone. The experiment results show that reasonable location accuracy is obtained with automatic fingerprinting in indoor environments.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 1 )