By Topic

Optimal Image Alignment With Random Projections of Manifolds: Algorithm and Geometric Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kokiopoulou, E. ; Seminar for Appl. Math., ETH Zurich, Zürich, Switzerland ; Kressner, D. ; Frossard, P.

This paper addresses the problem of image alignment based on random measurements. Image alignment consists of estimating the relative transformation between a query image and a reference image. We consider the specific problem where the query image is provided in compressed form in terms of linear measurements captured by a vision sensor. We cast the alignment problem as a manifold distance minimization problem in the linear subspace defined by the measurements. The transformation manifold that represents synthesis of shift, rotation, and isotropic scaling of the reference image can be given in closed form when the reference pattern is sparsely represented over a parametric dictionary. We show that the objective function can then be decomposed as the difference of two convex functions (DC) in the particular case where the dictionary is built on Gaussian functions. Thus, the optimization problem becomes a DC program, which in turn can be solved globally by a cutting plane method. The quality of the solution is typically affected by the number of random measurements and the condition number of the manifold that describes the transformations of the reference image. We show that the curvature, which is closely related to the condition number, remains bounded in our image alignment problem, which means that the relative transformation between two images can be determined optimally in a reduced subspace.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 6 )