By Topic

The Study of Information Capacity in Multispan Nonlinear Optical Fiber Communication Systems Using a Developed Perturbation Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lian Xiang ; Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China ; Xiao Ping Zhang

We study the information capacity for a multispan optical fiber transmission system with losses, dispersion, nonlinearity, and amplified spontaneous emission noise. A perturbation technique is developed to examine the information capacity, and a semianalytic expression of the conditional probability distribution function is determined initially. A novel semianalytical form of the information capacity was obtained, which can be extended to the wavelength division multiplexing optical fiber communication systems. Computer simulations are executed for various parameters of the transmission system. The studied results indicate that the capacity does not monotone increase with the input power and is affected by the nonlinear coefficient and bit rate prominently.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 3 )