By Topic

Nonlinear model-based fault detection with fuzzy set fault isolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Castillo, I. ; Dept. of Chem. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Edgar, T.F. ; Dunia, R.

This paper presents a nonlinear fault detection and isolation system that is able to distinguish single faults that have the same fault signatures. The detection mechanism is based on nonlinear state estimation. Fuzzy set theory followed by parameter estimation of certain parameters of the fault-free model are applied for fault isolation. This parameter estimation step is used to differentiate between a variety of faults, including those with similar signatures. The proposed fault detection and isolation (FDI) method is validated using an air heater lab experiment. Actuator and sensor faults are considered and comparisons with other methods are presented and analyzed under different fault scenarios. The proposed FDI method shows significant advantages when it is applied to nonlinear model systems with fault-free models available.

Published in:

IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society

Date of Conference:

7-10 Nov. 2010