By Topic

Dynamic response improvement in a buck type converter using capacitor current feed-forward control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The dynamic performance of dc-dc power electronic converters is mainly determined by the output filtering capacitor and inductor, control loop(s) compensator(s), and the voltage conversion ratio. Normally, a larger capacitance and/or a smaller inductance are not recommended because of the extra cost and size of the capacitor and/or the increment of the inductor current ripple. The capacitor current feedforward method has gained popularity due its fast dynamic response, simpler structure, and less sensing losses. In applications where a large voltage conversion ratio is needed, dynamic response for a load step-down scenario is worse than that of a load step-up condition. In order to alleviate this situation, a buck derived dc-dc converter is chosen. By combing the capacitor current feed-forward control and the buck derived converter topology, a novel control scheme is proposed in this paper. Simulation results containing the voltage overshoot and settling time are presented. The proposed approach is a high performance, simple structure, and low cost/volume strategy for load step-down dynamic improvements.

Published in:

IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society

Date of Conference:

7-10 Nov. 2010