By Topic

Reconfigurable baseband processing architecture for communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lu, W.Q. ; State Key Lab. of ASIC & Syst., Fudan Univ., Shanghai, China ; Zhao, S. ; Zhou, X.F. ; Ren, J.Y.
more authors

The development of multiple communication standards and services has created the need for a flexible and efficient computational platform for baseband signal processing. Using a set of heterogeneous reconfigurable execution units (RCEUS) and a homogeneous control mechanism, the proposed reconfigurable architecture achieves a large computational capability while still providing a high degree of flexibility. Software tools and a library of commonly used algorithms are also proposed in this paper to provide a convenient framework for hardware generation and algorithm mapping. In this way, the architecture can be specified in a high-level language and it also provides increased hardware resource usage. Finally, we evaluate the system's performance on representative algorithms, specifically a 32-tap finite impulse response (FIR) filter and a 256-point fast Fourier transform (FFT), and compare them with commercial digital signal processor (DSP) chips as well as with other reconfigurable and multi-core architectures.

Published in:

Computers & Digital Techniques, IET  (Volume:5 ,  Issue: 1 )