Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

Classification and Assessment of Power System Security Using Multiclass SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Kalyani, S. ; Dept. of Electr. Eng., Indian Inst. of Technol., Chennai, India ; Swarup, K.S.

Security assessment and classification are the major concerns in real-time operation of electric power systems. This paper proposes a multiclass support vector machine (SVM) classifier for static and transient security assessment and classification. A straightforward and quick procedure called the sequential forward selection method is used for a feature selection process. The security status of any given operating condition is classified into four modes, viz., secure, critically secure, insecure, and highly insecure, based on the computation of a security index. The proposed SVM-based pattern classifier system is implemented and tested on standard benchmark systems. The simulation results of the multiclass SVM classifier are compared with least-squares, probabilistic neural network, extreme learning machine, and extreme SVM classifiers. The feasibility of implementation of the proposed classifier system for online security evaluation is also discussed.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:41 ,  Issue: 5 )