By Topic

Classification and Assessment of Power System Security Using Multiclass SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kalyani, S. ; Dept. of Electr. Eng., Indian Inst. of Technol., Chennai, India ; Swarup, K.S.

Security assessment and classification are the major concerns in real-time operation of electric power systems. This paper proposes a multiclass support vector machine (SVM) classifier for static and transient security assessment and classification. A straightforward and quick procedure called the sequential forward selection method is used for a feature selection process. The security status of any given operating condition is classified into four modes, viz., secure, critically secure, insecure, and highly insecure, based on the computation of a security index. The proposed SVM-based pattern classifier system is implemented and tested on standard benchmark systems. The simulation results of the multiclass SVM classifier are compared with least-squares, probabilistic neural network, extreme learning machine, and extreme SVM classifiers. The feasibility of implementation of the proposed classifier system for online security evaluation is also discussed.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:41 ,  Issue: 5 )