Cart (Loading....) | Create Account
Close category search window
 

How Programmers Debug, Revisited: An Information Foraging Theory Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lawrance, J. ; Wentworth Institute of Technology, Boston ; Bogart, C. ; Burnett, M. ; Bellamy, R.
more authors

Many theories of human debugging rely on complex mental constructs that offer little practical advice to builders of software engineering tools. Although hypotheses are important in debugging, a theory of navigation adds more practical value to our understanding of how programmers debug. Therefore, in this paper, we reconsider how people go about debugging in large collections of source code using a modern programming environment. We present an information foraging theory of debugging that treats programmer navigation during debugging as being analogous to a predator following scent to find prey in the wild. The theory proposes that constructs of scent and topology provide enough information to describe and predict programmer navigation during debugging, without reference to mental states such as hypotheses. We investigate the scope of our theory through an empirical study of 10 professional programmers debugging a real-world open source program. We found that the programmers' verbalizations far more often concerned scent-following than hypotheses. To evaluate the predictiveness of our theory, we created an executable model that predicted programmer navigation behavior more accurately than comparable models that did not consider information scent. Finally, we discuss the implications of our results for enhancing software engineering tools.

Published in:

Software Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.