By Topic

Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wolf, L. ; Blavatnik Sch. of Comput. Sci., Tel-Aviv Univ., Tel Aviv, Israel ; Hassner, T. ; Taigman, Y.

Computer vision systems have demonstrated considerable improvement in recognizing and verifying faces in digital images. Still, recognizing faces appearing in unconstrained, natural conditions remains a challenging task. In this paper, we present a face-image, pair-matching approach primarily developed and tested on the “Labeled Faces in the Wild” (LFW) benchmark that reflects the challenges of face recognition from unconstrained images. The approach we propose makes the following contributions. 1) We present a family of novel face-image descriptors designed to capture statistics of local patch similarities. 2) We demonstrate how unlabeled background samples may be used to better evaluate image similarities. To this end, we describe a number of novel, effective similarity measures. 3) We show how labeled background samples, when available, may further improve classification performance, by employing a unique pair-matching pipeline. We present state-of-the-art results on the LFW pair-matching benchmarks. In addition, we show our system to be well suited for multilabel face classification (recognition) problem, on both the LFW images and on images from the laboratory controlled multi-PIE database.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 10 )
Biometrics Compendium, IEEE