By Topic

Richardson-Lucy Deblurring for Scenes under a Projective Motion Path

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Wing Tai ; Dept. of Comput. Sci., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Ping Tan ; Brown, M.S.

This paper addresses how to model and correct image blur that arises when a camera undergoes ego motion while observing a distant scene. In particular, we discuss how the blurred image can be modeled as an integration of the clear scene under a sequence of planar projective transformations (i.e., homographies) that describe the camera's path. This projective motion path blur model is more effective at modeling the spatially varying motion blur exhibited by ego motion than conventional methods based on space-invariant blur kernels. To correct the blurred image, we describe how to modify the Richardson-Lucy (RL) algorithm to incorporate this new blur model. In addition, we show that our projective motion RL algorithm can incorporate state-of-the-art regularization priors to improve the deblurred results. The projective motion path blur model, along with the modified RL algorithm, is detailed, together with experimental results demonstrating its overall effectiveness. Statistical analysis on the algorithm's convergence properties and robustness to noise is also provided.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 8 )