By Topic

The Capacity of Wireless Ad Hoc Networks Using Directional Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pan Li ; Dept. of Electr. & Comput. Eng., Mississippi State Univ., Starkville, MS, USA ; Chi Zhang ; Yuguang Fang

Considering a disk of unit area with n nodes, we investigate the capacity of wireless networks using directional antennas. First, we study the throughput capacity of random directional networks with multihop relay schemes, and find that the capacity gain compared to random omnidirectional networks is O(log n), which is tighter than previous results. We also show that using directional antennas can significantly reduce power consumption in the networks. Second, for the first time, we explore the throughput capacity of random directional networks with one-hop relay schemes. Interestingly and against our intuition, we find that one-hop instead of multihop delivery schemes can make random directional networks scale. Third, we investigate the trade-offs between transmission range and throughput in random directional networks and show that using larger transmission range can result in higher throughput. Finally, we present a lower bound on the transport capacity of arbitrary directional networks, and find that without side lobe directional antenna gain, arbitrary directional networks can also scale.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:10 ,  Issue: 10 )