Cart (Loading....) | Create Account
Close category search window

Energy-Balanced Transmission Policies for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Azad, A.K.M. ; Gippsland Sch. of Inf. Technol., Monash Univ., Churchill, VIC, Australia ; Kamruzzaman, J.

Transmission policy, in addition to topology control, routing, and MAC protocols, can play a vital role in extending network lifetime. Existing transmission policies, however, cause an extremely unbalanced energy usage that contributes to early demise of some sensors reducing overall network's lifetime drastically. Considering cocentric rings around the sink, we decompose the transmission distance of traditional multihop scheme into two parts: ring thickness and hop size, analyze the traffic and energy usage distribution among sensors and determine how energy usage varies and critical ring shifts with hop size. Based on above observations, we propose a transmission scheme and determine the optimal ring thickness and hop size by formulating network lifetime as an optimization problem. Numerical results show substantial improvements in terms of network lifetime and energy usage distribution over existing policies. Two other variations of this policy are also presented by redefining the optimization problem considering: 1) concomitant hop size variation by sensors over lifetime along with optimal duty cycles, and 2) a distinct set of hop sizes for sensors in each ring. Both variations bring increasingly uniform energy usage with lower critical energy and further improves lifetime. A heuristic for distributed implementation of each policy is also presented.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:10 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.