By Topic

Visual Analysis of Large Graphs Using (X,Y)-Clustering and Hybrid Visualizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Many different approaches have been proposed for the challenging problem of visually analyzing large networks. Clustering is one of the most promising. In this paper, we propose a new clustering technique whose goal is that of producing both intracluster graphs and intercluster graph with desired topological properties. We formalize this concept in the (X,Y) -clustering framework, where Y is the class that defines the desired topological properties of intracluster graphs and X is the class that defines the desired topological properties of the intercluster graph. By exploiting this approach, hybrid visualization tools can effectively combine different node-link and matrix-based representations, allowing users to interactively explore the graph by expansion/contraction of clusters without loosing their mental map. As a proof of concept, we describe the system Visual Hybrid (X,Y)-clustering (VHYXY) that implements our approach and we present the results of case studies to the visual analysis of social networks.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:17 ,  Issue: 11 )